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Abstract—Methods of group representation theory and Schur’s lemma are employed to impose restrictions
on the constitutive equations for elastic dielectrics which remain invariant under a group of symmetry
transformations. The method is discussed in detail and used to derive constitutive equations for Potassium
Dyhydrogen Phosphate (KDP), a dielectric which has only one phase transition point at 123°K. The
constitutive equations_are constructed both in the paraelectric phase (T > 123°K), where the crystal has
tetragonal symmetry (42m, (D24)) and also in the ferroelectric phase (T < 123°K) where the symmetry is of
orthorhombic type (mm2(Ca.)). The number of independent material constants is found to reduce from 171
to 30 and 54 for the two (phases) symmetry groups, respectively.

1. INTRODUCTION

Next to establishing balance laws, incorporation of symmetry restrictions in constitutive theory
are the major aspects of the linear and non-linear theories of continuous media. Recent years
have witnessed increased interest and activity in these areas resulting in explicit constitutive
equations for several classes of materials which remain invariant under a group of symmetry
transformations. The most frequently employed symmetry groups are the 32 crystallographic
groups and the 90 magnetic groups. To simplify the non-linear constitutive equations which
incorporate symmetry restrictions, it was customary to follow the method of Voigt{1] in which
polynomial expansions are employed and the coefficients in such expansions simplified, using
material restrictions. This method becomes cumbersome and increasingly complex as ‘the
number of terms in the equations increases. Finite groups and various other procedures for
simplifying constitutive equations have been developed by a number of authors{2-5]. An
extensive survey on the use of continuous groups to construct integrity bases for isotropic
materials is given by Spencer[6]). The book by Lomont[7] further enhances the use of finite
symmetry groups to problems of mechanics and constitutive theory.

Smith and Kiral[8, 9] have recently developed a more direct method of group representation
theory to simplify constitutive equations. The present authors used their method to construct
constitutive equations for alpha quartz[10].

In this paper, we use the method of group representation theory and Schur's lemma to
derive constitutive equations for the elastic dielectric, Potassium Dyhydrogen Phosphate
(KDP). Amongst all the ferro-electrics, KDP has the simplest macroscopic behaviour with only
one phase transition point at 123°K. Above this *“Currie point”, the crystal is in a paraelectric
phase, with tetragonal symmetry (42m) while below this temperature it is in a ferroelectric
phase, with orthorhombic symmetry (mm2). Elements of the symmetry groups 42m and mm2,
together with corresponding irreducible representations are listed. Constitutive equations are
constructed in both phases using the methods of group representation theory.

In the natural state, with no symmetry, the number of constants for an elastic dielectric
equals 171. It is observed that as the temperature increases through the Curie point, the
symmetry changes from mm2 to 42m and the number of elastic and dielectric constants
decreases from 54 to 30.

2. FUNDAMENTAL EQUATIONS

The general quadratic expression for the strain energy density function of deformation and
polarization of a homogeneous linear elastic dielectric is given by

WE(Sy, Pi, Pij) =1 cuSySus +4 ayPiP; + 3 by [Ty
+ fiSiwPs + JiPilli + dijpg 1Sk Q.1

1The results presented here were obtained in the course of research sponsored by the Natural Sciences and Engineering
Research Council of Canada, Grant No. A-2736.
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where §; are the components of the symmetric strain tensor, P; are components of the
polarization vector, and II;; = P,; are the components of the polarization gradient tensor. The
coefficient tensors Ciw, @i, byu, fi jix and di are the constant elastic and dielectric tensors.

The constitutive equations for the components of stress tensor oy;, the local electric vector
LE,; and the electric tensor ¢; are given by

0=~ Clﬂdsld + fku k + dldlinld (2.2)
3,
L
-LEi= 9"‘&,— = fwSu + auPr + juIlu 2.3)
aw*r .
=3, - dijaSut + jiiiPx + bijully. 24)

We introduce the following abbreviated matrix notation
o' =(001,02:03,03,03,002], S =[811,522,513,523,531,512]
B = [LE\,LEsLEsl, P'=[P,,P:,Py)
€' = [€11,€22,€33,€23,€32,€31,€13,€12,€21)
ﬁ' = [HlI9HZZ,H33,H2LH32’HJI’HB,HI2sn2I] (2'5)
where the superscript ¢ denotes the transpose of the column vector. The scheme for indexing
the various tensors is indicated in[10].

The strain energy density function of deformation and polarization and the constitutive
equations can now be written in matrix form as

WL(S,B,IT) = 4S,P,MIM(S,P,IIT 2.6)
— Fell = _3__3_ i ‘ L_ a1 C P Y
o Bay = [ aﬁ] Wt = M(8, B, 11} X))

where

N
6x6) (6x3) (6x9)

f a j
(3x6) (3x3) (3x9
F] f b
| 9%6) 9x3) (9x9)

=
I

(2.8)

and the numbers in parentheses below the matrix indicate the order of the matrix. For an elastic
dielectric with arbitrary symmetry, the total number of independent material constants is 171.
Let the crystallographic group {A}=IA,A;,...,Ax of N 3x3 matrices define the
symmetry transformations of the crystal. The matrix Ak is orthogonal and the rectangular
Cartesian coordinate system A, is said to be equivalent to the reference frame £.
The independent components of vectors S, P and IT in the reference frames £ and A% are
related by

S(A) = ASDAL P(A) = AP T(A) = AL AL 9)
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which lead to

Say _ T5(AnS(0), P(A) _ Te(A0P | (2.90)
(6x1) " (6x6)(6x1) 3x1) (3x3)(3xl) ;
MA) _ Ta(Aon

©Ox 1)~ Ox 99 1), (2.10)
The group of each of N transformation matrices Tis)(As), T(p,(&) and Tm,(Ak) of order 6 x 6,
3x3 and 9 x9, respectively, which describe the transformation properties of the strain vector,
S, polarization vector P and the polarization gradient vector I under the symmetry group {A}
are said to form its matrix representation {{'s)}, {f'ey}, {Fn} of degree 6,3 and 9, respectively. The
strain vector S(S11,522,513,52,511,512), the polarization vector P(P,,P,,P;) and the polarization
gradient vector IT(I1,1155,1T33,1T53, 32,115, 11,3,1T12,I134) are said to form the carrier spaces of the
representations. There are n inequivalent irreducible representations D,(A)(r =1,..., n) asso-
ciated with each of N elements of the symmetry group.

The representations

T} = {Ts)(A), Tisf(Aa), TisfAs) ..., Tis(AnD} 2.11a)
Loy = T &), Tor(Ad), TefAy). .., Tey(An} (2.11b)
T} = {TaAn, Ty A, Ta(&) - .., T An)) (2.11c)

can be decomposed into a direct sum of the irreducible representations D,,D-, ... D, of {A} by
constructing matrices Q.56 %6), Qp)3%3) Quy(9%9), associated with this group, from the
basic quantities. The number of times a '®Pi(R = S,P,II), the irreducible representation D;(A;)
appears in the decomposition of {['r} = {T.r)(Ac), k = 1 - N} is given by[9]

af =43 o fa(Ao DAY .12

where the suffix tr before the matrix stands for its trace

The components U3, U5, U3...; UL U, ; ULUTUY...; which from the carrier
spaces of the irreducible representations D(Ak) of the group {A}={A,A,... Ay} are linear
combinations of components of §={5,52,5%,5,831,51}, P ={P,P,,Ps} and I =
{T1,1,M52, 1133, 773,152,113, 11,3,1115,113,), respectively, and are determined from the formula[9)

N - - -
= gl Di(Ak)qu(Ak)R-q (2-13)

which may be written as
Umy = QuR(R = §,PTT) (2.19)

The matrices 0(3), O(p) and O(m can be explicitly constructed for the group {A} from the basic
quantities generated in (2.13).

The correctness of matrices Oz, (R = S,P,l1) can be verified by observing that Oz, Tz,
(A) Q@) (R =§,P,IT) reduces to the direct sum of the irreducible representation of every
symmetry operator A of the group {A}, the number of times of its occurrence being given by
(2.12). The matrices 0§(R S,PII), together with Schur's lemma are used to simplify the
constitutive equations.

3. BASIC QUANTITIES FOR PARAELECTRIC PHASE—42m(T > 123°K)

Of all the elastic dielectrics, Potassium Dyhydrogen Phosphate has the simplest macros-
copic behaviour and has only one phase transition point at 123°K. Here we construct the
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constitutive equations in the paraclectric phase (T > 123°K) where the crystal has tetragonal
symmetry 42m(D.,).
The matrices comprising the symmetry group {A} of this crystal class are given by

f1o00] s [1 o0 0] ; [-10 o
A=lot ol A=lo -1 o &= 01 o
0 01 00 -1 00 -1
-1 00 foro] s _ [ot o]
A=l g il A=l 1o00] Aol 0 o
0 0 1 00 1] 00 -1

(3.1

There are five inequivalent irreducible representations{7] DL(Z&),DZ(&},D;(AQ,DA&) and
Dy(Ay), k =1-8 as ociated with the group {4} ={A,,4,, ..., Ag} which are of degree one and
two and are listed below. =

The matrices T(x;(Ak) [R = §,P,I1k = 1 — 8] which describe the transformation properties of
the vectors S,P and IT can be determined from egs. (2.9) and (2.10). The values of a™®D
found from (2.12) are given by

a0 =2 g0 = gFDs = T4 = o TIDs = |

a(rP)Dl = a(rP)DZ = a(rP)D4 = 0, a(rP)DB = a(rP)DS -— 1

a(rn)Dx = a(rn)Ds = 2’ a(rn)Dz = a(rn)D;; — &(r")D‘ =1

33
The six independent components of 5(S11,522,533,523,531,S12), the three independent com-

ponents of P(P,P;,P;) and the nine  independent  components  of
T, g0, 1103, 1055, 1050, 115 I1,3,11,5,T15) can be split into basic quantities using eqn (2.13). The
basic quantities associated with the appropriate irreducible representation are found to be

(1) SY,(Su1+Sw); —— ; MY,y + M)

() —;— (I -Np®

(3) SHPY;(M, + M)

4 Su- Szz)“); — (- sz)«)

(5) (S23,51)%3(P1,P)®:(Ia3, 13} (T 32, T15,). 3.4)

Table 1. Irreducible Representations of 42m (Daa)

A A Ay A, As Ag A A
D, i 1 1 1 1 1 1 1
o, 1 -1 -1 1 -1 1 1 -1
D, 1 -1 -1 1 1 -1 -1 1
D, 1 1 1 1 1 .1 -1 -1
. f1o) fro -10} {-1 o} (o1 01 0-1} 8 -1
5 lo1 o o1 {o-1) lref {-10f {1 o {-1 o
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The matrices Q(s, Q) and Qq, are generated from the above basic quantities using the
following set of equations

(S9.(S11+ S2)",SP,(S11 — $2)“(S2,513)

= Qus(S11,522, 533,523, 531,812)' @3.5)
(P (P,PY®) = Qy(P1,Py,Ps) (3.6)
(nlh(nll + nn)(l)’(HZI - nl2)a)$(n21 + nll)(”smll - HZZ)(‘)9
(T3,1115)®, (T2, IT30)®) = Qeany(T 11, Ma, T3, W3, o, [Ty, 113,112, 1T0). 3.7
The matrices Qs), Q(r) and Q) and their inverses are listed in Appendix A.
4. BASIC QUANTITIES FOR FERROELECTRIC PHASE—mm2(T < 123°K)
The group comprising the symmetry operators of this crystal class is given by
_[1 00 1t o o] , [10 0O
A=lo 0] 2%lo -1 of #Slo1 o
001 0 0 -1 | 00 -1
1 0 0]
A4 - 0 _1 0 (4'1)
0 0 1]

There are four inequivalent irreducible representations Di(A)(i = 14,k = 1-4), associated with
the group {A}, which are all of degree 1 and are given in Table 2.

The matrices T,z,(A)(R = S,P,11, k = 1-4] which describe the transformation properties of
vectors S,P,11 can be determined from eqns (2)<9). The values of o found from the formula (2.12)
are given by

a T = 3, a TP = o TsID2 = (Ts)Dy - |
a(rp)Dz - 0, a(rp)D| = a(rp)D3 = a(l"p)D4 =1

a(rn)D| = 3’ a(rn)Dz = a(rn)Dz = a(rn)D: = a(rn)D4 =2.

4.3)

The six indepen_glent components of $(S11,52,513,52,513,512), the three independent com-
ponents of P(P,,P,,P3) and the nine independent  components  of
TT(IT 3, 2,1 053, 053,113,154, 1113,1155,115) can be split into basic quantities using the formula (2.13).
The basic quantities are found to be

Table 2. Irreducible representations of mm?2

A A Ay A4
b, 1 1 1 1
o, 1 1 -1 a1
0, 1 -1 1 -1
D, 1 a -1 1
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(1) S{?,542,84%;P ;I Y08
2) SY;— n{.ng
(3) SHPYIN.IY
(4) S,PO;I{Y;ISY. (4.4)

The matrices Qs), Q) and Qu, are generated from the basic quantities con-
structed above and are given by the following system of equations

(S1),S%.,S%.SR.5%.S1¢)
= Q5[ S11,522,553,52,531,Sn)" (4.5)
(P, P9,PSY = Qp)[P1, Py, Py] (4.6)
(49,1149, 119, T, 119 T, T 2, 1149, 1157
= Qeu[TT11, 22,1153, Thp3, 30, Ty, 113,11, Ty ). 4.7)

The transformation matrices Q)[R = S,P,IT] and their inverses are listed in
Appendix B.

S. REDUCTION OF CONSTITUTIVE COEFFICIENTS BY SCHUR'S LEMMA

The system of constitutive equations (2.7), with rows multiplied by the matrices Q;s), Q)
and Qq,, may be written in the form

o V_[er I av] [
_LE'# - ft i I p* (5.1
&* Jt r:u 5¢ 1*
where
(6*,5*) = Qu5(d, S)(LE*, P*) = Qo (LE,P),(*,1T*) = Quy(E]T)
and the coefficient matrices are given by
A A A Qs) - - Ef d Qs - -
x = . = - . 5.2
f* a © Qe - Fag | o& - ©-2)
d* 1 b* -+ Qm dreb -+ Qi

Making use of the matrices Qs), Q(») and Om, for the para-electric phase —42m (T > 123°K)
and the ferroelectric phase — mm2 (T < 123°K) constructed in Sections 3 and 4, and using
Schur’s lemma, the star coefficient matrices assume the forms as shown in Appendices A and B,
respectively.

(a) Paraelectric phase: —42m, T > 123°K)
A direct comparison of corresponding elements of matrices and their irreducible forms from
Appendix A leads to the following non-zero elastic and dielectric constants.
€12,€33,C66,C11 = €22,C13 = €23,Caa = Cs5

f36f1a = fasias3,a01 = an;

jis= fchu = jnJ:a = i
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dasidy = dn,diz = daydis = dys,dsy = dsa,
dsa = dgs,dus = dos,des = dos
b33,b31 = b3z, byi = bag,bas = byy,bas = b,
bse = ber,b12,bes,bss = by
and all other elements in matrices &,4,/,J,d,6 = 0.
Keeping in mind the above values of the material cieflicients, the explicit constitutive
equations for KDP in the paraelectric phase 42m (T > 123°K) are given in Table 3.
{b) Ferroelectric phase: (mm2, T <123°K)

A comparison of the corresponding elements of matrices and their irreducible forms from
Appendix B leads to the following set of non-zero elastic and dielectric constants

Cijli = 1-3,j = 1= 3),044,Cs5,Ce6
fusfifisfoefss
a4, a3ssjiniuivdmimdein
di(i = 1-3,j = 1 - 3),dus,dss,dss,drs,dns,doe
byli = 1-3,j = 1-3),bas,bas,bse,bss,bs,bes

b78,b79;b86yb87’b96’b97
all other constants in matrices 4,5,%,d.f,] being zero.

Table 3. Constitutive equations for KDP in Paraelectric Phase 42m)

511 S22 533 553 531 S12|F1 P2 Paffyy Ty Tag Uyy Uyp Mgy My3 By, By

%11 \' I . . . « e . >< I . . . .
-] . e . e e . . e .
Gygy je—e ¢ . . . L . . le—s & . . . .

ol N TN

7l 1

zero element, @ non-zero element, @—@ non-zero equal element
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Table 4. Constitutive equations for KDP in Ferroelectric Phase (mm?2)

S11 522 B33 Sp3 S31 S1af Py Py P3ffyy Map Myy Moy Mg Mgy Tyg Byp Myl

11 [ ] L] L) . . . [ ] . . LJ L [ ]
022 L L] L 4 . . . o . . L L L

033 L [ ] [ ) . . . L] . . le L] [ ]

- zero element, @ non-zero element

Table 5. Number of independent constants in coefficient matrices

Matrix No. Symmetry 2 -Symmetry i2m-Symmetry
Ferroelectric Phase Paraelectric Phase
b 21 9 6
H 18 5 2
a 6 3 2
d 54 15 8
b 45 15 9
3 27 7 3
Total 171 54 30

The explicit constitutive equations for the KDP in ferroelectric phase (mm2, T < 123°K) are
now written in the form of Table 4.

Results obtained in the constitutive tables generated above lead to distinct non-zero
independent elastic and dielectric constants and their number in the matrices &f,4,d,5,], are
presented in Table 5.

We observe that in the natural state of an elastic dielectric when there is no symmetry, the
number of material constants equals 171. As the temperature of KDP increases through the
Currie point, its symmetry changes from mm2 to 42m and the total number of constants
decreases from 54 to 30.
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APPENDIX A

Paraelectric phase (82m (Daq), T > 123°K) . . . )
The matrices O«s;,O(s'):Qm.pr'.:On and Q' which describe the transformation properties of S, P and II respectively,
are listed as:

Go=| - - . .

ot 1 foon
o

i
(e

a1 T C
O(S) l - E T OtPi’[] . }
PN P 1

. 1 . -
T 1. .
. . -1
.. .o 11
Quw=]1 -1 . T
.. 1 - .
.o 1
T . -
L L | -
~. 1 ! e
i -
1
Qb= - - -+ - 1 .
. . PR .. . N l
. 1 .
-4 4 .
id .
— -

The matrices &*f¢d*J*d* and 6* listed in eqn (5.1) are evaluated using eqns (5.2) and the matrices

Q(;»OFS‘».O(P;,Q("Pl:.otnro('n') listed above. The corresponding forms are obtained by multiplying the irreducible represen-
tations.
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{1) The matrix &* (symmetric):
B o O +C32
33 2
+
citen Eﬂ_z_fz?_
+
e Cel 2 Co2
ct= Q(S)EQ(S’; =
Ci3—€n ﬁL;—c}z
o Cq 42'642
CsitCs2
€33 7
&) &)
o) &)

3

(2) The matrix J*:

fn f_'___f__n; 2

[*:O(P:fd&',: fis fl\;ﬁ

fn !-2-'-%!2 f2

N[. - o)

(3) The matrix 4* {symmetric):

P. G. GLOCKNER

L3t~ €32

S

Cuu—Cn
2

Cot — Ce2
Ces ———2-—-

Cie+ Ca

cutin
Cie~Cx — 5

Ca—Ca
G T

Cs1—C52
G T

™
: ?\(S)

fu—fn

2
s
fa-fn

2

| -.'\.:(5)}

A xA-l _[Tan an anT] _[C@0G)
a O(P;ﬂOIP) an an an
an ax an
(4) The matrix *:
. o pithr —jetje jetie hi—j»
I 3 2 ) )
_ . iutin —hsthe jisthe ju—jn
1= 0Oy =| in L 2’ I 3 e 1 2; n 2"
i jutin —jmtje jutjn ju—jz
) 2 2

o3 -

§

C3 €33

CratCau Cis+C2s

(2] Ces

Cia—C2 Cis—C2s

Cas Cas
Cs4 Css
fa fis

bioln g,

fau fas

. :\;(S)J.

pa o fs b
jiu T s e

3 B2 o B I

: é\:(S) -‘\;(S)]




(5) The matrix 4*:
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dn

d*=QndQs = | du-da

2
da du ; da des du—da fude daz dea dus
dn dn ; dn dre dn ; dn dre dns
ds; é#j—l dss gg_;__d_sg dsa dss
des doi + ds2 des -45’-‘-%-& dss des
L 2 _
C o) o -7
o o)
~ L J6)] - : :
. o) . .
PY .
_ LT
(6) The matrix §* (symmetric):
b* = Qb =
by by + by ”bu +bag b + by by ; by bse by bs bss 1
+ b -b + — by
bis+bn butbn 2y (b:+ bi:s) (:::_'_zz:) gﬁz—bz buutbu  brtbn  bistbis  bist+ b
_ ~bai + bey bes— bsg —bss+ bes bsi + ba _ _ _ _
bus+ b ( baz + boz) (Hm + 599) (+bse + bw) (“bsz - qu) butbau ~burtbyr ~bustbes ~bust b
2 2
b + bor bu bes bag+ bes bsi + ba
bss + bey (b” + b”) ( + bn + b”) ( bao+ b”) ('bu _ bvz) beatbos  byrtber  bus+bos  bas+ ba
2 2
- —bu+b biu~-b b+ b
bu=bn ‘é”zi (+b:: o) (omopw)  TETBubub bobn by bucbu
2
bes batbe ~butbo  buths b~ ba b be Bas bes
2 2 2 2
- —b
brs d-u;dn b132+b19 bn;bn bn . 72 e b bos b
bsi + bs ~bss+bsy  butbsy bsi—bs bse b bss bss
bss 2 ] ? 2
bes bsg;bsz ~bscz+bas bss;bas bsl'z-bez bes ber bes bes

~dn+ds (

dy + dn
3 ds
+da +dn
2
~dgi +dw

dis+ das (dn+4n) die+ dae ( s‘?dn

~da+ dvz) ~dus + d

2

ds2 + d
2

du-dn
* (tfrz-dn) die=das

dgs + ds3 (du-l*doa) des+ dos (dn+d9;) dset dos  das+ dss

dn—dn "” ds ds

dutdie dis+das

ds|+d9| ~ _
+d! —dn dys+ dos —dus + dos

. )

du —dx

\du+du) +d; du—diwe  dis—-dxs
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K I o - . . . - 7
o1} &b . . < .
S e - :
. o - .o -
. o - .
,\0(5) ,\.(5)
"\.{3 ’\(5}_
APPENDIX B

Ferro-electric phase [mm2 (Cz.), T<123°K .
The matrices Qrs), 373, 0ip1, Qi Qunn, Qith which deseribe the transformation properties of 5, P and 11 are listed below:

1

N
O(S)=¢f_§)= -t '

Qo=Qih=1. . . . 1

-
oo[ ] J
N . ]

The matrices &*, f*, &*, J*, * and #* are evaluated by equs (5.1) and (5.2} and are compared to the corresponding forms
obtained by multiplication of the irreducible representations.

(1) The matrix &* (symmetric):

€1 €32 € T Cw €1
€ € B Cu (x L1

o b e O G O O C3s |
¢ o«s;férsy Cii Ca2 Ci3 Cu Cas Cas

Col Cs1 €63 Cot Con  Co
€51 €s2 €53 Cs4 Cse 88

&) 81 &h

{1 &1} O

& 91} &N
~1 . . [ Tvi e .
) YOK

L IO

{2) The matrix J*:

fu fir fis fie fo fis™
fr= Q5= [In fn fls fau fz: f;: -
fn fn fis fu fr b |

e} -
L JO N

[C(i} &) oD -
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(3) The matrix 4* (symmetric):

8*=0ir 807 =2=

(4) The matrix [:

a
a

in i

i
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(5) The matrix d*:
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